

 1

COLLEGE OF COMPUTING, INFORMATICS AND MATHEMATICS

UITM CAWANGAN JOHOR,

KAMPUS SEGAMAT

FINAL REPORT FOR

D ‘ GANU RESTAURANT FOOD ORDERING SYSTEMS

GROUP PROJECT 248

GROUP MEMBER STUDENT ID
AHMAD DANIAL BIN HISHAM 2023492972
MUHAMMAD DANIEL BIN M ZULKIFLI 2023882308
MUHAMMAD AMIRUN HAMIZAN BIN
KHAMISAN

2023601668

GROUP : JCDCS1103C

LECTURER NAME : MADAM MAZLYDA ABD RAHMAN

DATE SUBMISSION :

 2

TABLE OF CONTENT

NO CONTENT PAGE
1. Introduction of project and group members.
2. Distribution of works between team members

3. Complete coding of all classes.
4. Sample input and output.

5. Conclusions of your finding: which of the data structure best applied
in your case study

 3

INTODUCTION OF PROJECT AND GROUP MEMBERS

Our restaurant's Food Ordering System simplifies managing customer orders and restaurant

operations with several key features. The system includes comprehensive customer data

management and order tracking capabilities.

First, all customer information is displayed in a customer list, allowing easy access to

essential details. Customers can also view specific information such as those whose food

price is less than $10. The system enables staff to identify the highest and lowest food prices

for each customer efficiently.

Additionally, it counts and displays the number of customers who purchase a specific food

item, providing valuable insights into customer preferences. The system also allows for the

reorganization of data by transferring customer details into various linked lists based on

payment methods, such as custLL, creditLL, onlineLL, and cashLL.

The number of customers using each payment method is counted and displayed, offering a

clear view of payment trends. Staff can search the creditCardLL linked list to update order

statuses for customers who paid via credit card. Similarly, the average food price can be

calculated and searched within the cashLL linked list.

Moreover, the system allows staff to search by customer name to update food items in their

order, ensuring flexibility and accuracy in managing customer preferences. Lastly, in the end

of output our coding will generate a report that count each of food are being buy from

customer

This enhanced system with real-time updates and an intuitive design ensures a convenient

and efficient experience for both customers and restaurant staff.

The application will be able to:

-Display all the data in customer list.

-Display information of customer where the foodprice < 10.

-Find highest and lowest food price of a customer.

-Count and display number of customer that buy any food name.

-Remove all the data in customer list into custLL,creditLL,onlineLL,cashLL.

-count and display number of payment method of a customer.

-search customer id in creditCardLL to update orderStatus.

-search average food price in cashLL.

-search customer name to update food name.

-calculate total price for each payment method.

-generate a report that count each of food are being buy from customer

 4

LIST OF PROCESSING

• INSERT

 To insert the customer’s personal information such as name, phone

number and email

 To insert the customer’s order for food and drinks

 To insert the customer’s delivery address

• CALCULATE

• Find the highest and lowest food price of a customer.

• Calculate the total price for each payment method.

• Search the average food price in cashLL

• TRAVERSING & COUNT

• Display all the data in the customer list.

• Display information of customers where the food price < 10.

• Count and display the number of customers that buy any specific food item.

• Count and display the number of payment methods of a customer.

• REMOVE

• Remove all the data in the customer list into custLL, creditLL, onlineLL, cashLL..

• SEARCH

• Search customer ID in creditCardLL to update orderStatus.

• Search customer name to update food name.

• UPDATE

• Update orderStatus by searching the customer ID in creditCardLL.

• Update food name by searching the customer name.

 5

2. Distribution of works between team members

GROUP MEMEBRS

MUHAMMAD AMIRUN HAMIZAN BIN
KHAMISAN

2023601668

AHMAD DANIAL BIN ISHAM

2023601668

MUHAMMAD DANIEL BIN M ZULKIFLI

2023882308

 6

DISTRIBUTION OF WORKS BETWEEN TEAM MEMBERS

AMIRUN HAMIZAN BIN KHAMISAN 1. Propose the project idea

2. Assignment of responsibilities

among group members

3. Design and implementation of all

class definitions.

4. Provide guidance and assist in

development of the linked list and

queue main classes.

AHMAD DANIAL BIN ISHAM 1. Design and implement the queue

main class.

2. Helping with the making of the

project’s proposal.

3. Helping with the making of the final

report.

MUHAMMAD DANIEL BIN M

ZULKIFLI

1. Design and implement the linked

list main class.

2. Helping with the making of the

project’s proposal.

3. Helping with the making of the

coding segment

3.Complete Coding of All cases

 7

INPUT FILE .TXT

C001,Ahmad Zulkifli,0123456789,ahmad.zulkifli@gmail.com,O001,2025-01-12

12:00,complete,Nasi Lemak,4.00,cash

C002,Siti Nurhaliza,0987654321,siti.nurhaliza@gmail.com,O002,2025-01-12

12:30,pending,Char Kway Teow,6.00,credit card

C003,Muhammad Hafiz,0112233445,muhammad.hafiz@yahoo.com,O003,2025-01-12

13:00,complete,Nasi Lemak,4.00,online transfer

C004,Zainab Abdullah,0223344556,zainab.abdullah@outlook.com,O004,2025-01-12

13:15,complete,Nasi Kerabu,7.00,credit card

C005,Lim Beng Hock,0334455667,lim.benghock@gmail.com,O005,2025-01-12

14:00,cancel,Char Kway Teow,6.00,cash

C006,Noor Fatimah,0445566778,noor.fatimah@hotmail.com,O006,2025-01-12

14:30,pending,Roti Canai,2.00,online transfer

C007,Ravi Kumar,0556677889,ravi.kumar@gmail.com,O007,2025-01-12

15:00,complete,Nasi Dagang,6.50,cash

C008,Tan Mei Ling,0667788990,tan.meiling@yahoo.com,O008,2025-01-12

15:15,complete,Nasi Dagang,6.50,credit card

C009,Chong Wei,0778899001,chong.wei@outlook.com,O009,2025-01-12

16:00,complete,Char Kway Teow,6.00,online transfer

C010,Nurul Ain,0889900112,nurul.ain@gmail.com,O010,2025-01-12 16:30,cancel,Nasi

Lemak,4.00,credit card

C011,Azman Latif,0990011223,azman.latif@gmail.com,O011,2025-01-12

17:00,pending,Roti Canai,2.00,cash

C012,Aisyah Rahman,0101122334,aisyah.rahman@yahoo.com,O012,2025-01-12

17:15,complete,Nasi Kerabu,7.00,online transfer

C013,Nagarajan Raj,0111233445,nagarajan.raj@gmail.com,O013,2025-01-12

18:00,pending,Nasi Dagang,6.50,credit card

C014,Liew Hong,0122233445,liew.hong@gmail.com,O014,2025-01-12

18:30,complete,Char Kway Teow,6.00,cash

C015,Farid Ismail,0133344556,farid.ismail@hotmail.com,O015,2025-01-12

19:00,cancel,Roti Canai,2.00,online transfer

C016,Sarah Zahira,0144455667,sarah.zahira@gmail.com,O016,2025-01-12

19:15,complete,Nasi Kerabu,7.00,credit card

C017,Teo Kian Seng,0155566778,teo.kianseng@yahoo.com,O017,2025-01-12

20:00,complete,Nasi Dagang,6.50,online transfer

C018,Rosnah Daud,0166677889,rosnah.daud@gmail.com,O018,2025-01-12

20:30,pending,Nasi Dagang,6.50,cash

 8

C019,Hisham Mokhtar,0177788990,hisham.mokhtar@outlook.com,O019,2025-01-12

21:00,complete,Char Kway Teow,6.00,credit card

C020,Lee Choon Wah,0188899001,lee.choonwah@gmail.com,O020,2025-01-12

21:30,cancel,Roti Canai,2.00,online transfer

C021,Ahmad Bakri,0199900112,ahmad.bakri@gmail.com,O021,2025-01-12

22:00,complete,Nasi Lemak,4.00,cash

C022,Nur Syafiqah,0200011223,nur.syafiqah@gmail.com,O022,2025-01-12

22:30,pending,Nasi Lemak,4.00,credit card

C023,Roslan Hamid,0211122334,roslan.hamid@yahoo.com,O023,2025-01-12

23:00,complete,Char Kway Teow,6.00,online transfer

C024,Amira Hassan,0222233445,amira.hassan@gmail.com,O024,2025-01-12

23:15,complete,Nasi Dagang,6.50,cash

C025,Wan Fariz,0233344556,wan.fariz@outlook.com,O025,2025-01-12

23:30,complete,Nasi Kerabu,7.00,credit card

C026,Chee Yin,0244455667,chee.yin@gmail.com,O026,2025-01-12 23:45,cancel,Nasi

Dagang,6.50,online transfer

C027,Fatimah Yaakob,0255566778,fatimah.yaakob@yahoo.com,O027,2025-01-13

00:00,complete,Char Kway Teow,6.00,cash

C028,Singh Amarjit,0266677889,singh.amarjit@gmail.com,O028,2025-01-13

00:15,pending,Nasi Dagang,6.50,credit card

C029,Noor Hafizah,0277788990,noor.hafizah@gmail.com,O029,2025-01-13

00:30,complete,Roti Canai,2.00,online transfer

C030,Zamri Nasir,0288899001,zamri.nasir@gmail.com,O030,2025-01-13

01:00,complete,Nasi Kerabu,7.00,cash

CLASS NODE

/***

Coder: Roslan S, UiTM Pahang, roslancs@uitm.edu.my

Year: 2012

***/

public class Node<E>{

 E data;

 Node next;

 public Node(E data) {

 9

 this.data = data;

 }

}

CLASS DEFINITION LINKED LIST

public class LinkedList<E> {

 private Node<E> head, current, tail;

 public LinkedList() {

 head = current = tail = null;

 }

 public boolean isEmpty() {

 return head == null;

 }

 public void addFirst(E data) {

 Node newNode = new Node(data);

 newNode.next = this.head;

 this.head = newNode;

 if(this.tail == null) {

 this.tail = this.head;

 }

 }

 public void addLast(E data) {

 Node newNode = new Node(data);

 if(this.tail == null) {

 10

 this.head = this.tail = newNode;

 }

 else {

 this.tail.next = newNode;

 this.tail = this.tail.next;

 }

 }

 public E getFirst() {

 if (this.isEmpty()) {

 return null;

 }

 else {

 this.current = this.head;

 return this.current.data;

 }

 }

 public E getLast() {

 if (this.isEmpty()) {

 return null;

 }

 else {

 return this.tail.data;

 }

 }

 public E getNext() {

 if (this.current == this.tail) {

 return null;

 }

 else {

 this.current = this.current.next;

 11

 return this.current.data;

 }

 }

 public void clear() {

 this.head = this.current = this.tail = null;

 }

 public boolean contains(E data) {

 boolean isContain = false;

 this.current = this.head;

 while (this.current != null) {

 if (data.equals(this.current.data)) {

 isContain = true;

 break;

 }

 }

 return isContain;

 }

 public E removeFirst() {

 if (this.isEmpty()) {

 return null;

 }

 else {

 this.current = this.head;

 this.head = this.head.next;

 if (this.head == null)

 this.tail = null;

 12

 return current.data;

 }

 }

 public E removeLast() {

 if (this.isEmpty())

 return null;

 else if (this.head == this.tail) {

 this.current = this.head;

 this.head = this.tail = null;

 return current.data;

 }

 else {

 this.current = this.head;

 while (this.current.next != tail) {

 this.current = this.current.next;

 }

 Node<E> temp = this.tail;

 this.tail = this.current;

 this.tail.next = null;

 return temp.data;

 }

 }

 public E removeAfter(E data) {

 if (this.isEmpty()) {

 return null;

 }

 else if (this.head == this.tail) {

 this.current = this.head;

 this.head = this.tail = null;

 return current.data;

 13

 }

 else {

 Node<E> previous = this.head;

 while (previous.next != null) {

 if (data.equals(previous.data))

 {

 break;

 }

 previous = previous.next;

 }

 current = previous.next;

 previous.next = current.next;

 return current.data;

 }

 }

 public String toString() {

 StringBuilder result = new StringBuilder("[");

 if (this.isEmpty()) {

 result.append("The list is empty]");

 }

 else {

 this.current = this.head;

 while (this.current != null) {

 result.append(this.current.data);

 this.current = this.current.next;

 if (this.current != null)

 result.append(", ");

 else

 result.append("]");

 }

 }

 return result.toString();

 14

 }

}

CLASS DEFINITION QUEUE

public class Queue <E>

{

 private LinkedList <E> list;

 public Queue() {list = new LinkedList<E>();}

 public void enqueue(E data) {

 list.addLast(data);

 }

 public E dequeue() {

 return list.removeFirst();

 }

 public E getFront() {

 return list.getFirst();

 }

 public boolean isEmpty() {

 return list.isEmpty();

 }

}

CLASS DEFINITION RESTAURANT

import java.text.*;

public class Restaurant{

 15

 private String orderID;

 private String orderTime;

 private String orderStatus;

 private String foodName;

 private double foodPrice;

 private String paymentMethod;

 public Restaurant(String orderID,String orderTime,String orderStatus,String

foodName,double foodPrice,String paymentMethod){

 this.orderID = orderID;

 this.orderTime = orderTime;

 this.orderStatus = orderStatus;

 this.foodName = foodName;

 this.foodPrice = foodPrice;

 this.paymentMethod = paymentMethod;

 }

 public String getOrderID(){return orderID;}

 public String getOrderTime(){return orderTime;}

 public String getOrderStatus(){return orderStatus;}

 public String getFoodName(){return foodName;}

 public double getFoodPrice(){return foodPrice;}

 public String getPaymentMethod(){return paymentMethod;}

 public void setStatusOrder(String newOrderStatus){

 orderStatus = newOrderStatus;

 }

 public void setPaymentMethod(String newPaymentMethod){

 paymentMethod = newPaymentMethod;

 }

 16

 public String toString(){

 return String.format(

 "| %-14s | %-16.2f | %-14s | $%-9.2f | %-17s | %-17s |\n" ,

 orderID, orderTime, orderStatus,foodName, foodPrice, paymentMethod);

 }

}

CLASS DEFINITION CUSTOMER

import java.text.*;

public class Customer{

 private String custID;

 private String custName;

 private String custPhoneNum;

 private String custEmail;

 private Restaurant restaurant;

 DecimalFormat df = new DecimalFormat("0.00");

 public Customer(String custID,String custName,String custPhoneNum, String

custEmail,Restaurant restaurant)

 {

 this.custID = custID;

 this.custName = custName ;

 this.custPhoneNum = custPhoneNum;

 this.custEmail = custEmail;

 this.restaurant = restaurant;

 }

 public String getCustID(){return custID;}

 public String getCustName(){return custName;}

 17

 public String getCustPhoneNum(){return custPhoneNum;}

 public String getCustEmail(){return custEmail;}

 public Restaurant getRestaurant(){return restaurant;}

 public String toString() {

 return String.format(

 "| %-13s | %-18s | %-16s | %-30s | %-14s | %-18s | %-13s | %-10.2f | %-17s | %-

17s |",

 custID, custName, custPhoneNum, custEmail,

 restaurant.getOrderID(), restaurant.getOrderTime(),

 restaurant.getOrderStatus(), restaurant.getFoodPrice(),

 restaurant.getFoodName(), restaurant.getPaymentMethod()

);

 }

}

TEST CLASS TestRestaurantLL

import java.util.*;

import java.io.*;

import java.text.*;

import java.text.DecimalFormat;

public class TestRestaurantLL{

 public static void main(String[]args) throws IOException

 {

 FileReader fr = new FileReader("Cust.txt");

 18

 BufferedReader br = new BufferedReader(fr);

 DecimalFormat df = new DecimalFormat("0.00");

 Scanner scanner = new Scanner(System.in);

 scanner.useDelimiter("\n");

 LinkedList <Customer> CustomerList = new LinkedList();

 //5 Create LinkedLists for custom

 LinkedList<Customer> custLL = new LinkedList();

 LinkedList<Customer> creditLL = new LinkedList();

 LinkedList<Customer> onlineLL = new LinkedList();

 LinkedList<Customer> cashLL = new LinkedList();

 String custID;

 String custName;

 String custPhoneNum;

 String custEmail;

 String orderID;

 String orderTime;

 String orderStatus;

 double foodPrice;

 String foodName;

 String paymentMethod;

 String inData = null;

 while((inData = br.readLine()) != null)

 {

 StringTokenizer st = new StringTokenizer(inData, ",");

 custID = st.nextToken();

 custName = st.nextToken();

 19

 custPhoneNum = st.nextToken();

 custEmail = st.nextToken();

 orderID = st.nextToken();

 orderTime = st.nextToken();

 orderStatus = st.nextToken();

 foodName = st.nextToken();

 foodPrice = Double.parseDouble(st.nextToken());

 paymentMethod = st.nextToken();

 Restaurant restaurant = new Restaurant(orderID, orderTime,

orderStatus,foodName, foodPrice, paymentMethod);

 Customer customer = new Customer(custID, custName, custPhoneNum,

custEmail,restaurant);

 CustomerList.addFirst(customer);

 }

 br.close();

 fr.close();

 System.out.printf("%-20s %-10s\n", "Food Item", "Price (RM)");

 System.out.println("-----------------------------------");

 System.out.printf("%-20s %-10.2f\n", "Nasi Lemak", 4.00);

 System.out.printf("%-20s %-10.2f\n", "Char Kway Teow", 6.00);

 System.out.printf("%-20s %-10.2f\n", "Roti Canai", 2.00);

 System.out.printf("%-20s %-10.2f\n", "Nasi Dagang", 6.50);

 System.out.printf("%-20s %-10.2f\n", "Nasi Kerabu", 7.00);

 //1. Display customer order

 20

 System.out.println("\n+---------------+--------------------+------------------+-------------

Display Customer Order Information-------------------+----------------+--------------------+-----------

----+------------+------");

 System.out.println("\n+---------------+--------------------+------------------+----------------------

----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.println("| Customer ID | Customer Name | Phone Number |

Email | Order ID | Order Time | Order Status | Food Price | Food

Name | Payment Method |");

 System.out.println("+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 Customer obj;

 obj = CustomerList.getFirst();

 while(obj != null){

 System.out.println(obj.toString());

 obj = CustomerList.getNext();

 }

 System.out.println("\n+---------------+--------------------+------------------+----------------------

----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 // 2. Count and display number of customers that buy a specific payment

method

 System.out.println("\nCount and Display number of customer payment

method");

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.print("\nEnter the payment method to search for(cash | online |

credit): ");

 String searchPaymentMethod = scanner.nextLine().trim();

 int cashCount = 0;

 int onlineCount = 0;

 int creditCount = 0;

 21

 obj = CustomerList.getFirst();

 while(obj != null){

 if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Cash")){

 cashCount++;

 }

 else if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Online

Transfer")){

 onlineCount++;

 }

 else if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Credit

Card")){

 creditCount++;

 }

 obj = CustomerList.getNext();

 }

 if(searchPaymentMethod.equalsIgnoreCase("Cash")){

 System.out.printf("Number of customers who pay with '%s': %d%n",

searchPaymentMethod, cashCount);

 }

 else if(searchPaymentMethod.equalsIgnoreCase("Online")){

 System.out.printf("Number of customers who pay with '%s': %d%n",

searchPaymentMethod, onlineCount);

 }

 else if(searchPaymentMethod.equalsIgnoreCase("Credit")){

 System.out.printf("Number of customers who pay with '%s': %d%n",

searchPaymentMethod, creditCount);

 }

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 // 3. Search customer ID in customer list to update orderStatus

 System.out.println("\nSearch customer id and Update Status");

 22

 System.out.println("\n\n+---------------+--------------------+------------------+-------------------

-------------+----------------+--------------------+---------------+------------+-------------------+-----------------

--+");

 System.out.print("\nEnter the Customer ID to search for and update order

status: ");

 String searchCustomerID = scanner.nextLine();

 boolean customerFound = false;

 obj = CustomerList.getFirst(); // Start from the first customer in the linked list

 while (obj != null) {

 if (obj.getCustID().equalsIgnoreCase(searchCustomerID)) {

 customerFound = true;

 System.out.println("\nCustomer found:");

 System.out.println(obj.toString()); // Display current customer details

 System.out.println();

 System.out.println("\n+---------------+--------------------+------------------+---------------

-----------------+----------------+--------------------+---------------+------------+-------------------+-------------

------+");

 System.out.println("\nUpdate Status");

 System.out.println("\n+---------------+--------------------+------------------+---------------

-----------------+----------------+--------------------+---------------+------------+-------------------+-------------

------+");

 System.out.print("Enter the new order status: ");

 String newOrderStatus = scanner.nextLine().trim();

 obj.getRestaurant().setStatusOrder(newOrderStatus); // Update order

status

 System.out.println("\nOrder status updated successfully!");

 System.out.println();

 System.out.println(obj.toString()); // Display updated customer details

 System.out.println("\n+---------------+--------------------+------------------+---------------

-----------------+----------------+--------------------+---------------+------------+-------------------+-------------

------+");

 }

 23

 obj = CustomerList.getNext(); // Move to the next customer

 }

 System.out.println("\n+---------------+--------------------+------------------+----------------

Update Customer Information---------------------------+---------------+------------+-------------------

+-------------------+");

 obj = CustomerList.getFirst();

 while(obj != null){

 System.out.println(obj.toString());

 obj = CustomerList.getNext();

 }

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 //4

 System.out.println("\nSearch Customer Name and Update Payment Method");

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.print("\nEnter the Customer Name to search for and update

payment method: ");

 String searchCustomerName = scanner.nextLine();

 boolean nameFound = false;

 obj = CustomerList.getFirst(); // Start from the first customer in the linked list

 while (obj != null) {

 if (obj.getCustName().equalsIgnoreCase(searchCustomerName)) {

 nameFound = true;

 24

 System.out.println("\nCustomer found:");

 System.out.println(obj.toString()); // Display current customer details

 System.out.println();

 System.out.println("+---------------+--------------------+------------------+-----------------

---------------+----------------+--------------------+---------------+------------+-------------------+---------------

----+");

 System.out.println("\n\n+---------------+--------------------+------------------+------------

--------------------+----------------+--------------------+---------------+------------+-------------------+----------

---------+");

 System.out.print("Enter the new payment method: ");

 String newPaymentMethod = scanner.nextLine().trim();

 obj.getRestaurant().setPaymentMethod(newPaymentMethod); // Update

order status

 System.out.println("\nCustomer payment method updated successfully!");

 System.out.println();

 System.out.println(obj.toString()); // Display updated customer details

 System.out.println("\n+---------------+--------------------+------------------+---------------

-----------------+----------------+--------------------+---------------+------------+-------------------+-------------

------+");

 }

 obj = CustomerList.getNext(); // Move to the next customer

 }

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 obj = CustomerList.getFirst();

 while(obj != null){

 System.out.println(obj.toString());

 25

 obj = CustomerList.getNext();

 }

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.print("\nEnter the payment method to search for(cash | online |

credit): ");

 String searchPayment = scanner.nextLine().trim();

 double totalPriceC = 0.00;

 double totalPriceOn9 = 0.00 ;

 double totalPriceCard = 0.00;

 obj = CustomerList.getFirst();

 while(obj != null){

 if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Cash")){

 totalPriceC += obj.getRestaurant().getFoodPrice();

 }

 else if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Online

Transfer")){

 totalPriceOn9 += obj.getRestaurant().getFoodPrice();

 }

 else if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Credit

Card")){

 totalPriceCard += obj.getRestaurant().getFoodPrice();

 }

 obj = CustomerList.getNext();

 }

 if(searchPayment.equalsIgnoreCase("Cash")){

 System.out.println("Total price cutomer who pay with cash : "

+df.format(totalPriceC));

 }

 26

 else if(searchPayment.equalsIgnoreCase("Online")){

 System.out.printf("Total price cutomer who pay with online payment : "

+df.format(totalPriceOn9));

 }

 else if(searchPayment.equalsIgnoreCase("Credit")){

 System.out.printf("Total price cutomer who pay with : "

+df.format(totalPriceCard));

 }

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 //5 remove all the data in cust list into custLL,creditLL,onlineLL

 // Transfer all data from CustomerList

 System.out.println("\nSort Customer Payment Method");

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 while (!CustomerList.isEmpty()) {

 Customer customer = CustomerList.removeFirst(); // Remove from

CustomerList

 custLL.addFirst(customer); // Add to custLL

 // Check payment method and add to appropriate lists

 if (customer.getRestaurant().getPaymentMethod().equalsIgnoreCase("Credit

Card")) {

 creditLL.addFirst(customer);

 } else if

(customer.getRestaurant().getPaymentMethod().equalsIgnoreCase("Online Transfer"))

{

 onlineLL.addFirst(customer);

 } else if

(customer.getRestaurant().getPaymentMethod().equalsIgnoreCase("Cash")){

 cashLL.addFirst(customer);

 }

 }

 27

 System.out.println("\nAll customers (custLL):");

 Customer current = custLL.getFirst();

 while (current != null) {

 System.out.println(current.toString());

 current = custLL.getNext();

 }

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.println("\nCustomers who paid with Credit Card (creditLL):");

 current = creditLL.getFirst();

 while (current != null) {

 System.out.println(current.toString());

 current = creditLL.getNext();

 }

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.println("\nCustomers who paid with Online Transfer (onlineLL):");

 current = onlineLL.getFirst();

 while (current != null) {

 System.out.println(current.toString());

 current = onlineLL.getNext();

 }

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 28

 System.out.println("\nCustomers who paid with Cash Payment (cashLL):");

 current = cashLL.getFirst();

 while (current != null) {

 System.out.println(current.toString());

 current = cashLL.getNext();

 }

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 //6. display information of customer where the foodprice < 10.00

 System.out.println("\n+---------------+--------------------+------------------+----------------

Display Customer Food Price less than RM10-------------+----------------+--------------------+----

-----------+------------+-");

 System.out.println("\n+---------------+--------------------+------------------+----------------------

----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.println("| Customer ID | Customer Name | Phone Number |

Email | Order ID | Order Time | Order Status | Food Price | Food

Name | Payment Method |");

 System.out.println("+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 obj = custLL.getFirst();

 while(obj != null){

 if(obj.getRestaurant().getFoodPrice() < 10.00){

 System.out.println(obj.toString());

 }

 obj = custLL.getNext();

 }

 System.out.println("\n+---------------+--------------------+------------------+----------------------

----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 29

 //7. find highest and lowest price of a customer

 Customer highestObj = custLL.getFirst();

 Customer lowestObj = custLL.getFirst();

 obj = custLL.getFirst();

 while(obj != null){

 if(obj.getRestaurant().getFoodPrice() >

highestObj.getRestaurant().getFoodPrice()){

 highestObj = obj ;

 }

 else if(obj.getRestaurant().getFoodPrice() <

lowestObj.getRestaurant().getFoodPrice()){

 lowestObj = obj;

 }

 obj = custLL.getNext();

 }

 System.out.println("\n+---------------+--------------------+------------------+----------------

Display Customer Highset and Lowest Price-------------+----------------+--------------------+------

---------+-----------+-");

 System.out.println("\nCustomer with the Highest Food Price:");

 System.out.println(highestObj);

 System.out.println("\nCustomer with the Lowest Food Price:");

 System.out.println(lowestObj);

 30

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 // 8. Calculate and display the average food price in customer list

 double totalFoodPrice = 0;

 int customerCount = 0;

 System.out.println("\n+---------------+--------------------+------------------+----------------

Display average food price among all customer---------+---------------+------------+--------------

-----+-------------------+");

 obj = custLL.getFirst(); // Start from the first customer in the linked list

 while (obj != null) {

 totalFoodPrice += obj.getRestaurant().getFoodPrice(); // Accumulate food

prices

 customerCount++; // Count each customer

 obj = custLL.getNext(); // Move to the next customer

 }

 if (customerCount > 0) {

 double averageFoodPrice = totalFoodPrice / customerCount;

 System.out.printf("\nThe average food price among all customers is:

RM%.2f%n", averageFoodPrice);

 } else {

 System.out.println("\nNo customers available to calculate the average food

price.");

 }

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 //9

 31

 System.out.print("\nEnter the payment method to search for(cash | online |

credit): ");

 String searchPaymentLL = scanner.nextLine().trim();

 double totalPriceCLL = 0.00;

 double totalPriceOn9LL = 0.00 ;

 double totalPriceCardLL = 0.00;

 obj = custLL.getFirst();

 while(obj != null){

 if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Cash")){

 totalPriceCLL += obj.getRestaurant().getFoodPrice();

 }

 else if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Online

Transfer")){

 totalPriceOn9LL += obj.getRestaurant().getFoodPrice();

 }

 else if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Credit

Card")){

 totalPriceCardLL += obj.getRestaurant().getFoodPrice();

 }

 obj = custLL.getNext();

 }

 if(searchPayment.equalsIgnoreCase("Cash")){

 System.out.println("Total price cutomer who pay with cash : "

+df.format(totalPriceCLL));

 }

 else if(searchPayment.equalsIgnoreCase("Online")){

 System.out.printf("Total price cutomer who pay with online payment : "

+df.format(totalPriceOn9LL));

 }

 else if(searchPayment.equalsIgnoreCase("Credit")){

 System.out.printf("Total price cutomer who pay with : "

+df.format(totalPriceCardLL));

 32

 }

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 //10 - Generate Report

 System.out.println("\n+---------------+--------------------+------------------+---------------------

-----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.println("\nReport for food names and the number of the

customers");

 System.out.println("\nFood Report:");

 System.out.println("+-------------------+------------------+");

 System.out.println("| Food Name | Total Customers |");

 System.out.println("+-------------------+------------------+");

 int nlemakC = 0;

 int CKTc = 0;

 int rotiCanaiC=0;

 int nDagangC = 0;

 int nKerabuC = 0;

 obj = custLL.getFirst();

 while(obj != null)

 {

 if(obj.getRestaurant().getFoodName().equalsIgnoreCase("Nasi Lemak"))

 {

 nlemakC++;

 }

 else if (obj.getRestaurant().getFoodName().equalsIgnoreCase("Char Kway

Teow"))

 {

 CKTc++;

 33

 }

 else if(obj.getRestaurant().getFoodName().equalsIgnoreCase("Roti Canai"))

 {

 rotiCanaiC++;

 }

 else if(obj.getRestaurant().getFoodName().equalsIgnoreCase("Nasi

Dagang"))

 {

 nDagangC++;

 }

 else if(obj.getRestaurant().getFoodName().equalsIgnoreCase("Nasi

Kerabu")){

 nKerabuC++;

 }

 obj = custLL.getNext();

 }

 System.out.printf("| %-17s | %-16d |\n", "Nasi Lemak", nlemakC);

 System.out.printf("| %-17s | %-16d |\n", "Char Kway Tiaw", CKTc);

 System.out.printf("| %-17s | %-16d |\n", "Roti Canai", rotiCanaiC);

 System.out.printf("| %-17s | %-16d |\n", "Nasi Dagang",nDagangC);

 System.out.printf("| %-17s | %-16d |\n", "Nasi Kerabu", nKerabuC);

 System.out.println("+-------------------+------------------+");

 }

}

TEST CLASS TestRestaurantQ

import java.util.*;

 34

import java.io.*;

import java.text.*;

import java.text.DecimalFormat;

public class TestRestaurantQ

{

 public static void main(String[]args) throws IOException

 {

 FileReader fr = new FileReader("Cust.txt");

 BufferedReader br = new BufferedReader(fr);

 DecimalFormat df = new DecimalFormat("#.##");

 Scanner scanner = new Scanner(System.in);

 scanner.useDelimiter("\n");

 Queue <Customer> CustomerQ = new Queue();

 Queue<Customer> tempQ = new Queue();

 // Create Queue For Custom

 Queue <Customer> custQ = new Queue();

 Queue <Customer> creditQ = new Queue();

 Queue <Customer> onlineQ = new Queue();

 Queue <Customer> cashQ = new Queue();

 String custID, custName, custPhoneNum, custEmail;

 String orderID;

 String orderTime;

 String orderStatus;

 double foodPrice;

 String foodName;

 String paymentMethod;

 int NameFood;

 35

 String inData = null;

 while((inData = br.readLine()) != null)

 {

 StringTokenizer st = new StringTokenizer(inData, ",");

 custID = st.nextToken();

 custName = st.nextToken();

 custPhoneNum = st.nextToken();

 custEmail = st.nextToken();

 orderID = st.nextToken();

 orderTime = st.nextToken();

 orderStatus = st.nextToken();

 foodName = st.nextToken();

 foodPrice = Double.parseDouble(st.nextToken());

 paymentMethod = st.nextToken();

 Restaurant restaurant = new Restaurant (orderID, orderTime, orderStatus,

foodName, foodPrice, paymentMethod);

 Customer customer = new Customer(custID, custName, custPhoneNum,

custEmail,restaurant);

 CustomerQ.enqueue(customer);

 }

 br.close();

 fr.close();

 System.out.printf("%-20s %-10s\n", "Food Item", "Price (RM)");

 System.out.println("-----------------------------------");

 System.out.printf("%-20s %-10.2f\n", "Nasi Lemak", 4.00);

 36

 System.out.printf("%-20s %-10.2f\n", "Char Kway Teow", 6.00);

 System.out.printf("%-20s %-10.2f\n", "Roti Canai", 2.00);

 System.out.printf("%-20s %-10.2f\n", "Nasi Dagang", 6.50);

 System.out.printf("%-20s %-10.2f\n", "Nasi Kerabu", 7.00);

 //1. Display customer order

 System.out.println("\nDisplay Customer Order Information");

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.println("| Customer ID | Customer Name | Phone Number |

Email | Order ID | Order Time | Order Status | Food Price | Food

Name | Payment Method |");

 System.out.println("+---------------+--------------------+------------------+---------------------------

-----+----------------+--------------------+---------------+------------+-------------------+-------------------+");

 Customer obj;

 while(!CustomerQ.isEmpty())

 {

 obj = CustomerQ.dequeue();

 System.out.println(obj.toString());

 tempQ.enqueue(obj);

 }

 while(!tempQ.isEmpty())

 {

 CustomerQ.enqueue(tempQ.dequeue());//yang buang tadi akan masuk balik

 }

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 37

 // 2. count and display number of customer payment method

 System.out.println("\nCount and Display number of customer payment

method");

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.print("\nEnter the payment method to search for(cash | online |

credit): ");

 String searchPaymentMethod = scanner.nextLine().trim();

 int cashCount = 0;

 int onlineCount = 0;

 int creditCount = 0;

 while(!CustomerQ.isEmpty()){

 obj = CustomerQ.dequeue();

 if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Cash")){

 cashCount++;

 }

 else if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Online

Transfer")){

 onlineCount++;

 }

 else if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Credit

Card")){

 creditCount++;

 }

 tempQ.enqueue(obj);

 }

 38

 if(searchPaymentMethod.equalsIgnoreCase("Cash")){

 System.out.printf("Number of customers who pay with '%s': %d%n",

searchPaymentMethod, cashCount);

 }

 else if(searchPaymentMethod.equalsIgnoreCase("Online Transfer")){

 System.out.printf("Number of customers who pay with '%s': %d%n",

searchPaymentMethod, onlineCount);

 }

 else if(searchPaymentMethod.equalsIgnoreCase("Credit Card")){

 System.out.printf("Number of customers who pay with '%s': %d%n",

searchPaymentMethod, creditCount);

 }

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 // Restore custQ from tempQ

 while (!tempQ.isEmpty()) {

 CustomerQ.enqueue(tempQ.dequeue());

 }

 // 3. search customer ID and update order status

 System.out.println("\nSearch customer id and Update Status");

 System.out.println("\n\n+---------------+--------------------+------------------+----------------------

----------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.print("\nEnter the Customer ID to search for and update order status:

");

 String searchCustomerID = scanner.nextLine();

 boolean customerFound = false;

 39

 while (!CustomerQ.isEmpty())

 {

 obj = CustomerQ.dequeue();

 if (obj.getCustID().equalsIgnoreCase(searchCustomerID))

 {

 customerFound = true;

 System.out.println("\nCustomer found:");

 System.out.println(obj.toString()); // Display current customer details

 System.out.println();

 System.out.println("\n+---------------+--------------------+------------------+---------------

-----------------+----------------+--------------------+---------------+------------+-------------------+-------------

------+");

 System.out.println("\nUpdate Status");

 System.out.println("\n+---------------+--------------------+------------------+---------------

-----------------+----------------+--------------------+---------------+------------+-------------------+-------------

------+");

 System.out.print("\nEnter the new order status: ");

 String newOrderStatus = scanner.nextLine().trim();

 obj.getRestaurant().setStatusOrder(newOrderStatus); // Update order

status

 System.out.println("\nOrder status updated successfully!");

 System.out.println();

 System.out.println(obj.toString()); // Display updated customer details

 System.out.println("\n+---------------+--------------------+------------------+---------------

-----------------+----------------+--------------------+---------------+------------+-------------------+-------------

------+");

 }

 tempQ.enqueue(obj); // Move to the next customer

 }

 40

 System.out.println("\n+---------------+--------------------+------------------+----------------

Update Customer Information---------------------------+---------------+------------+-------------------

+-------------------+");

 // Restore custQ from tempQ

 while (!tempQ.isEmpty())

 {

 CustomerQ.enqueue(tempQ.dequeue());

 }

 while(!CustomerQ.isEmpty())

 {

 obj = CustomerQ.dequeue();

 System.out.println(obj.toString());

 tempQ.enqueue(obj);

 }

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 // Restore custQ from tempQ

 while (!tempQ.isEmpty())

 {

 CustomerQ.enqueue(tempQ.dequeue());

 }

 41

 // 4 - Search Customer Name and Update Payment Method

 System.out.println("\nSearch Customer Name and Update Payment Method");

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.print("\nEnter the Customer Name to search for and update payment

method: ");

 String searchCustomerName = scanner.nextLine();

 boolean nameFound = false;

 while (!CustomerQ.isEmpty())

 {

 obj = CustomerQ.dequeue();

 if (obj.getCustName().equalsIgnoreCase(searchCustomerName)) {

 nameFound = true;

 System.out.println("\nCustomer found:");

 System.out.println(obj.toString()); // Display current customer details

 System.out.println();

 System.out.println("+---------------+--------------------+------------------+-----------------

---------------+----------------+--------------------+---------------+------------+-------------------+---------------

----+");

 System.out.println("\n\n+---------------+--------------------+------------------+------------

--------------------+----------------+--------------------+---------------+------------+-------------------+----------

---------+");

 System.out.print("Enter the new payment method: ");

 String newPaymentMethod = scanner.nextLine().trim();

 obj.getRestaurant().setPaymentMethod(newPaymentMethod); // Update

order status

 42

 System.out.println("\nCustomer payment method updated successfully!");

 System.out.println();

 System.out.println(obj.toString()); // Display updated customer details

 System.out.println("\n+---------------+--------------------+------------------+---------------

-----------------+----------------+--------------------+---------------+------------+-------------------+-------------

------+");

 }

 tempQ.enqueue(obj);

 }

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 // Restore custQ from tempQ

 while (!tempQ.isEmpty())

 {

 CustomerQ.enqueue(tempQ.dequeue());

 }

 while(!CustomerQ.isEmpty())

 {

 obj = CustomerQ.dequeue();

 System.out.println(obj.toString());

 tempQ.enqueue(obj);

 }

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 // Restore custQ from tempQ

 while (!tempQ.isEmpty())

 43

 {

 CustomerQ.enqueue(tempQ.dequeue());

 }

 //5 -remove all the data in cust list into custQ,creditQ,onlineQ

 // Transfer all data from CustomerList

 System.out.println("\nSort Customer Payment Method");

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 while (!CustomerQ.isEmpty())

 {

 obj = CustomerQ.dequeue(); // Remove from CustomerList

 // Check payment method and add to appropriate lists

 if (obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Credit

Card")) {

 creditQ.enqueue(obj);

 } else if (obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Online

Transfer")) {

 onlineQ.enqueue(obj);

 } else if

(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Cash")){

 cashQ.enqueue(obj);

 }

 tempQ.enqueue(obj);

 }

 // Restore custQ from tempQ

 while (!tempQ.isEmpty())

 {

 44

 CustomerQ.enqueue(tempQ.dequeue());

 }

 System.out.println("\nAll customers (custQ):");

 while (!CustomerQ.isEmpty())

 {

 obj = CustomerQ.dequeue();

 System.out.println(obj.toString());

 tempQ.enqueue(obj);

 }

 System.out.println("\nCustomers who paid with Credit Card (creditLL):");

 while (!creditQ.isEmpty())

 {

 obj = creditQ.dequeue();

 System.out.println(obj.toString());

 }

 System.out.println("\nCustomers who paid with Online Transfer (onlineLL):");

 while (!onlineQ.isEmpty())

 {

 obj = onlineQ.dequeue();

 System.out.println(obj.toString());

 }

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.println("\nCustomers who paid with Cash Payment (cashLL):");

 45

 while (!cashQ.isEmpty())

 {

 obj = cashQ.dequeue();

 System.out.println(obj.toString());

 }

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 // Restore custQ from tempQ

 while (!tempQ.isEmpty())

 {

 CustomerQ.enqueue(tempQ.dequeue());

 }

 //6. Display information of customer where the foodprice < 10.00

 System.out.println("\nDisplay Customer Information where the food price below

than RM 10.00");

 System.out.println("\n+---------------+--------------------+------------------+----------------

Display Customer Food Price less than RM10-------------+----------------+--------------------+----

-----------+------------+-");

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 System.out.println("| Customer ID | Customer Name | Phone Number |

Email | Order ID | Order Time | Order Status | Food Price | Food

Name | Payment Method |");

 System.out.println("+---------------+--------------------+------------------+---------------------------

-----+----------------+--------------------+---------------+------------+-------------------+-------------------+");

 while(!CustomerQ.isEmpty())

 {

 obj = CustomerQ.dequeue();

 if(obj.getRestaurant().getFoodPrice() < 10.00)

 {

 46

 System.out.println(obj.toString());

 }

 tempQ.enqueue(obj);

 }

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 while(!tempQ.isEmpty())

 {

 CustomerQ.enqueue(tempQ.dequeue());//yang buang tadi akan masuk balik

 }

 //7. Find Highest And Lowest price of customer order

 Customer highestObj = null;

 Customer lowestObj = null;

 // Initialize highestObj and lowestObj with the first customer

 if (!CustomerQ.isEmpty())

 {

 highestObj = CustomerQ.dequeue();

 lowestObj = highestObj; // Both start as the same first customer

 tempQ.enqueue(highestObj); // Enqueue back into tempQ for further

processing

 }

 // Compare remaining customers to find the highest and lowest food prices

 while (!CustomerQ.isEmpty())

 47

 {

 obj = CustomerQ.dequeue();

 if (obj.getRestaurant().getFoodPrice() >

highestObj.getRestaurant().getFoodPrice())

 {

 highestObj = obj;

 }

 if (obj.getRestaurant().getFoodPrice() <

lowestObj.getRestaurant().getFoodPrice())

 {

 lowestObj = obj;

 }

 tempQ.enqueue(obj);

 }

 // Restore the original queue

 while (!tempQ.isEmpty())

 {

 CustomerQ.enqueue(tempQ.dequeue());

 }

 System.out.println("\n+---------------+--------------------+------------------+----------------

Display Customer Highest and Lowest Price-------------+----------------+--------------------+------

---------+-----------+-");

 System.out.println("\nCustomer with the Highest Food Price:");

 System.out.println(highestObj);

 System.out.println("\nCustomer with the Lowest Food Price:");

 System.out.println(lowestObj);

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 48

 // 8. Calculate And Display the Average food Price in Customer List

 double totalFoodPrice = 0;

 int customerCount = 0;

 System.out.println("\n+---------------+--------------------+------------------+----------------

Display average food price among all customer---------+---------------+------------+--------------

-----+-------------------+");

 while (!CustomerQ.isEmpty())

 {

 obj = CustomerQ.dequeue();

 totalFoodPrice += obj.getRestaurant().getFoodPrice(); // Accumulate food

prices

 customerCount++; // Count each customer

 tempQ.enqueue(obj); // Move to the next customer

 }

 if (customerCount > 0)

 {

 double averageFoodPrice = totalFoodPrice / customerCount;

 System.out.printf("\nThe average food price among all customers is:

RM%.2f%n", averageFoodPrice);

 } else

 {

 System.out.println("\nNo customers available to calculate the average food

price.");

 }

 49

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 // Restore custQ from tempQ

 while (!tempQ.isEmpty())

 {

 CustomerQ.enqueue(tempQ.dequeue());

 }

 // 9 - Calculate total Price of Payment method

 System.out.print("\nEnter the payment method to calculate total price for(cash |

online | credit): ");

 String searchPayment = scanner.nextLine().trim();

 double totalPriceC = 0.00;

 double totalPriceOn9 = 0.00 ;

 double totalPriceCard = 0.00;

 while(!CustomerQ.isEmpty())

 {

 obj = CustomerQ.dequeue();

 if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Cash"))

 {

 totalPriceC += obj.getRestaurant().getFoodPrice();

 }

 else if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Online

Transfer"))

 {

 totalPriceOn9 += obj.getRestaurant().getFoodPrice();

 }

 50

 else if(obj.getRestaurant().getPaymentMethod().equalsIgnoreCase("Credit

Card"))

 {

 totalPriceCard += obj.getRestaurant().getFoodPrice();

 }

 tempQ.enqueue(obj);

 }

 // Restore custQ from tempQ

 while (!tempQ.isEmpty())

 {

 CustomerQ.enqueue(tempQ.dequeue());

 }

 if(searchPayment.equalsIgnoreCase("Cash")){

 System.out.println("Total price customer who pay with cash : " +

df.format(totalPriceC));

 }

 else if(searchPayment.equalsIgnoreCase("Online Transfer")){

 System.out.printf("Total price customer who pay with online payment : " +

df.format(totalPriceOn9));

 }

 else if(searchPayment.equalsIgnoreCase("Credit")){

 System.out.printf("Total price customer who pay with : " +

df.format(totalPriceCard));

 }

 System.out.println("\n+---------------+--------------------+------------------+-------------------------

-------+----------------+--------------------+---------------+------------+-------------------+-------------------

+");

 // 10. Generate a report for food names and the number of customers

 System.out.println("\nReport for food names and the number of the customers");

 51

 System.out.println("\nFood Report:");

 System.out.println("+-------------------+------------------+");

 System.out.println("| Food Name | Total Customers |");

 System.out.println("+-------------------+------------------+");

 // Outer loop to traverse through CustomerQ

 while (!CustomerQ.isEmpty()) {

 obj = CustomerQ.dequeue(); // Dequeue a customer

 String currentFoodName = obj.getRestaurant().getFoodName(); // Get the food

name

 boolean alreadyCounted = false;

 // Check if this food name has already been processed

 Queue<Customer> checkTempQ = new Queue<>(); // Temporary queue for

iteration

 while (!tempQ.isEmpty()) {

 Customer tempCustomer = tempQ.dequeue();

 if (tempCustomer.getRestaurant().getFoodName().equals(currentFoodName))

{

 alreadyCounted = true;

 }

 checkTempQ.enqueue(tempCustomer); // Restore tempQ

 }

 // Restore tempQ after checking

 while (!checkTempQ.isEmpty()) {

 tempQ.enqueue(checkTempQ.dequeue());

 }

 if (!alreadyCounted) {

 int foodCount = 1; // Start with the current customer

 //Inner loop to count occurrences of the current food name

 Queue<Customer> innerTempQ = new Queue<>();

 52

 while (!CustomerQ.isEmpty())

 {

 Customer tempObj = CustomerQ.dequeue();

 if (tempObj.getRestaurant().getFoodName().equals(currentFoodName)) {

 foodCount++;

 }

 innerTempQ.enqueue(tempObj); // Restore the original queue

 }

 // Restore CustomerQ from innerTempQ

 while (!innerTempQ.isEmpty()) {

 CustomerQ.enqueue(innerTempQ.dequeue());

 }

 // Display the result for the current food name

 System.out.printf("| %-17s | %-16d |\n", currentFoodName, foodCount);

 }

 tempQ.enqueue(obj); // Add the current customer to tempQ

 }

 // Restore CustomerQ from tempQ

 while (!tempQ.isEmpty()) {

 CustomerQ.enqueue(tempQ.dequeue());

 }

 System.out.println("+-------------------+------------------+");

 }

}

 53

4. SAMPLE INPUT AND OUTPUT

 54

 55

 56

 57

5. CONCLUSION

The Food Ordering System is designed to simplify the management of customer orders and

restaurant operations through an intuitive and efficient approach. Using Linked List data

structures offers several benefits for this application.Linked Lists are well-suited for this case

because they allow easy traversal and navigation of data. They enable efficient management

of customer information, order tracking, and payment methods without the risk of data loss.

In contrast, Queues presented challenges such as difficulties in navigation and the need to

restore data after every operation, which often resulted in data loss.By implementing Linked

List data structures, the system ensures smooth operations such as transferring customer

data, classifying payment methods, and updating orders. This choice provides a reliable,

effective, and user-friendly solution that enhances the overall functionality of the Food

Ordering System.

